HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Inositol-1,4,5-Trisphosphate Receptor-1 and-3 and Ryanodine Receptor-3 May Increase Ooplasmic Ca2+ During Quail Egg Activation

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.2141/jpsa.0210041


Title: Inositol-1,4,5-Trisphosphate Receptor-1 and-3 and Ryanodine Receptor-3 May Increase Ooplasmic Ca2+ During Quail Egg Activation
Authors: Mizushima, Shusei Browse this author →KAKEN DB
Sasanami, Tomohiro Browse this author →KAKEN DB
Ono, Tamao Browse this author
Kansaku, Norio Browse this author →KAKEN DB
Kuroiwa, Asato Browse this author →KAKEN DB
Keywords: egg activation
inositol 1,4,5-trisphosphate receptor
intracellular Ca2+
Japanese quail
ryanodine receptor
Issue Date: 2022
Publisher: Japan poultry science association
Journal Title: Journal of poultry science
Volume: 59
Issue: 2
Start Page: 175
End Page: 181
Publisher DOI: 10.2141/jpsa.0210041
Abstract: We previously reported that egg activation in Japanese quail is driven by two distinct types of intracellular Ca2+ ([Ca2+]i): transient elevations in [Ca2+]i induced by phospholipase Czeta 1 (PLCZ1) and long-lasting spiral-like Ca2+ oscillations by citrate synthase (CS) and aconitate hydratase 2 (ACO2). Although the blockade of inositol 1,4,5trisphosphate receptors (ITPRs) before microinjections of PLCZ1, CS, and ACO2 cRNAs only prevented transient increases in [Ca2+]i, a microinjection of an agonist of ryanodine receptors (RYRs) induced spiral-like Ca2+ oscillations, indicating the involvement of both ITPRs and RYRs in these events. In this study, we investigated the isoforms of ITPRs and RYRs responsible for the expression of the two types of [Ca2+]i increases. RT-PCR and western blot analyses revealed that ITPR1, ITPR3, and RYR3 were expressed in ovulated eggs. These proteins were degraded 3 h after the microinjection of PLCZ1, CS, and ACO2 cRNAs, which is the time at which egg activation was complete. However, degradation of ITPR1 and ITPR3, but not RYR3, was initiated 30 min after a single injection of PLCZ1 cRNA, corresponding to the time of the initial Ca2+ wave termination. In contrast, RYR3 degradation was observed 3 h after the microinjection of CS and ACO2 cRNAs. These results indicate that ITPRs and RYR3 differentially mediate in creases in [Ca2+]i during egg activation in Japanese quail, and that downregulation of ITPRs and RYR3-mediated events terminate the initial Ca2+ wave and spiral-like Ca2+ oscillations, respectively.
Type: article
URI: http://hdl.handle.net/2115/85710
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University