HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

Real-time observation of the Woodward-Hoffmann rule for 1,3-cyclohexadiene by femtosecond soft X-ray transient absorption

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: Real-time observation of the Woodward-Hoffmann rule for 1,3-cyclohexadiene by femtosecond soft X-ray transient absorption
Authors: Sekikawa, Taro Browse this author →KAKEN DB
Saito, Nariyuki Browse this author
Kurimoto, Yutaro Browse this author
Ishii, Nobuhisa Browse this author
Mizuno, Tomoya Browse this author
Kanai, Teruto Browse this author
Itatani, Jiro Browse this author
Saita, Kenichiro Browse this author
Taketsugu, Tetsuya Browse this author →KAKEN DB
Issue Date: 28-Mar-2023
Publisher: Royal Society of Chemistry
Journal Title: Physical chemistry chemical physics
Volume: 25
Issue: 12
Start Page: 8497
End Page: 8506
Publisher DOI: 10.1039/d2cp05268g
Abstract: The stereochemistry of pericyclic reactions is explained by orbital symmetry conservation, referred to as the Woodward-Hoffmann (WH) rule. Although this rule has been verified using the structures of reactants and products, the temporal evolution of the orbital symmetry during the reaction has not been clarified. Herein, we used femtosecond soft X-ray transient absorption spectroscopy to elucidate the thermal pericyclic reaction of 1,3-cyclohexadiene (CHD) molecules, i.e., their isomerization to 1,3,5-hexatriene. In the present experimental scheme, the ring-opening reaction is driven by the thermal vibrational energy induced by photoexcitation to the Rydberg states at 6.2 eV and subsequent femtosecond relaxation to the ground state of CHD molecules. The direction of the ring opening, which can be conrotatory or disrotatory, was the primary focus, and the WH rule predicts the disrotatory pathway in the thermal process. We observed the shifts in K-edge absorption of the carbon atom from the 1s orbital to vacant molecular orbitals around 285 eV at a delay between 340 and 600 fs. Furthermore, a theoretical investigation predicts that the shifts depend on the molecular structures along the reaction pathways and the observed shifts in induced absorption are attributed to the structural change in the disrotatory pathway. This confirms that the orbital symmetry is dynamically conserved in the ring-opening reaction of CHD molecules as predicted using the WH rule.
Type: article
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University