HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Information Science and Technology / Faculty of Information Science and Technology >
Peer-reviewed Journal Articles, etc >

Stress and Deformation Analysis of REBCO Pancake Coils With Individual Turn Movement

Files in This Item:
ASC2022-2LPo1B-08_FINAL_VERSION_source.pdf2.33 MBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/88949

Title: Stress and Deformation Analysis of REBCO Pancake Coils With Individual Turn Movement
Authors: Kodaka, Kazuma Browse this author
Noguchi, So Browse this author →KAKEN DB
Keywords: Deformation analysis
high magnetic field
no-insulation winding technique
REBCO coil
Issue Date: Aug-2023
Publisher: IEEE (Institute of Electrical and Electronics Engineers)
Journal Title: IEEE transactions on applied superconductivity
Volume: 33
Issue: 5
Start Page: 4600305
Publisher DOI: 10.1109/TASC.2023.3237122
Abstract: In recent years, rare-earth barium copper oxide (REBCO) pancake coils have shown excellent performances in high magnetic field applications. The no-insulation (NI) winding technique enables to enhance the thermal stability and current density of REBCO pancake coils. Still, further developments of REBCO coils are expected; e.g., the mechanical deteriorations of REBCO tapes caused by electromagnetic forces have been reported. The screening currents are considered as one of the causes to damage the REBCO tapes because of a nonuniform current distribution. Meanwhile, the electromagnetic forces on non-impregnant NI REBCO coils, whose windings can be deformed separately with turns and moved easily, are complicated, and the detailed mechanism has not yet been clarified. Commonly, the circumferential movement/deformation of the winding is considered as a rigid body. In this study, we investigate the stresses and displacements due to the electromagnetic forces on NI REBCO pancake coils in high magnetic field using a current simulation and a 2D elastic finite element analysis in the radial and circumferential directions; i.e., each turn can individually move in the radial and circumferential directions considering the spiral winding structure. The simulation results show the circumferential movement/deformation of windings and the nonuniform hoop stress due to the electromagnetic force.
Rights: © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Type: article (author version)
URI: http://hdl.handle.net/2115/88949
Appears in Collections:情報科学院・情報科学研究院 (Graduate School of Information Science and Technology / Faculty of Information Science and Technology) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 野口 聡

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University