HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Engineering / Faculty of Engineering >
Peer-reviewed Journal Articles, etc >

C-C Bond Formation Reaction Catalyzed by a Lithium Atom Benzene-to-Biphenyl Coupling

Files in This Item:

The file(s) associated with this item can be obtained from the following URL:

Title: C-C Bond Formation Reaction Catalyzed by a Lithium Atom Benzene-to-Biphenyl Coupling
Authors: Tachikawa, Hiroto Browse this author →KAKEN DB
Issue Date: 21-Mar-2023
Publisher: American Chemical Society
Journal Title: ACS Omega
Volume: 8
Issue: 11
Start Page: 10600
End Page: 10606
Publisher DOI: 10.1021/acsomega.3c00520
PMID: 36969438
Abstract: Transition-metal-catalyzed carbon-carbon (C-C) bond formation is an important reaction in pharmaceutical and organic chemistry. However, the reaction process is composed of multiple steps and is expensive owing to the presence of transition metals. This study proposes a lithium catalyzed C-C coupling reaction of two benzene molecules (Bz) to form a biphenyl molecule, which is a transition-metal-free reaction, based on ab initio and direct ab initio molecular dynamics (AIMD) calculations. The static ab initio calculations indicate that the reaction of two Bz molecules with Li- ions (reactant state, RC) can form a stable sandwiched complex (precomplex), where the Li- ion is sandwiched by two Bz molecules. The complex formation reaction can be expressed as 2Bz + Li --* Bz(Li -)Bz, where the C-C distance between the Bz rings is 2.449 angstrom. This complex moves to the transition state (TS) via the structural deformation of Bz(Li-)Bz, where the C-C distance is shortened to 2.118 angstrom. The barrier height was calculated to be -9.9 kcal/mol (relative to RC) at the MP2/6-311++G(d,p) level. After TS, the C(sp3)-C(sp3) single bond was completely formed between the Bz rings (the C-C bond distance was 1.635 angstrom) (late complex). After the dissociation of H2 from the late complex, a biphenyl molecule was formed: the C(sp2)-C(sp2) bond. The calculations suggest that the C-C bond coupling of Bz occurred spontaneously from 2Bz + Li-, and biphenyl molecules were directly formed without an activation barrier. Direct AIMD calculations show that the C-C coupling reaction also takes place under electron attachment to Li(Bz)2: Li(Bz)2 + e--* [Li-(Bz)2]ver-* precomplex-* TS-* late complex, where [Li-(Bz)2]ver is the vertical electron capture species of Li(Bz)2. Namely, the C-C coupling reaction spontaneously occurred in Li(Bz)2 owing to electron attachment. Similar C-C coupling reactions were also observed for halogen-substituted benzene molecules (Bz-X, X = F and Cl). Furthermore, this study discusses the mechanism of C-C bond formation in electron capture based on the theoretical results.
Type: article
Appears in Collections:工学院・工学研究院 (Graduate School of Engineering / Faculty of Engineering) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University