HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Water partitioning in the Earth's mantle

Files in This Item:
PEPI183-1-2_245-251.pdf933.95 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/44920

Title: Water partitioning in the Earth's mantle
Authors: Inoue, Toru Browse this author
Wada, Tomoyuki Browse this author
Sasaki, Rumi Browse this author
Yurimoto, Hisayoshi Browse this author
Keywords: Mantle
Olivine
Wadsleyite
Ringwoodite
Perovskite
Hydrous wadsleyite
Hydrous ringwoodite
High pressure phase transformation
Partitioning of H2O
Issue Date: Nov-2010
Publisher: Elsevier B.V.
Journal Title: Physics of the Earth and Planetary Interiors
Volume: 183
Issue: 1-2
Start Page: 245
End Page: 251
Publisher DOI: 10.1016/j.pepi.2010.08.003
Abstract: We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.
Type: article (author version)
URI: http://hdl.handle.net/2115/44920
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 圦本 尚義

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University