HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
Peer-reviewed Journal Articles, etc >

Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting : application to USArray

Files in This Item:
1463.full.pdf14.72 MBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting : application to USArray
Authors: Hamada, K. Browse this author
Yoshizawa, K. Browse this author
Keywords: Inverse theory
Surface waves and free oscillations
Seismic tomography
North America
Issue Date: Sep-2015
Publisher: Oxford University Press
Journal Title: Geophysical journal international
Volume: 202
Issue: 3
Start Page: 1463
End Page: 1482
Publisher DOI: 10.1093/gji/ggv213
Abstract: A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit better recovery of phase speed perturbations, particularly where the strong lateral velocity gradient exists in which the effects of elastic focussing can be significant; that is, the Yellowstone hotspot, Snake River Plains, and Rio Grande Rift. The enhanced resolution of the phase speed models derived from the interstation phase and amplitude measurements will be of use for the better seismological constraint on the lithospheric structure, in combination with dense broad-band seismic arrays.
Type: article
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar )

MathJax is now OFF:


 - Hokkaido University