HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
情報科学研究科  >
雑誌発表論文等  >

Monophonic sound source separation by non-negative sparse autoencoders

smc2014-zen.pdf264.63 kBPDF見る/開く

タイトル: Monophonic sound source separation by non-negative sparse autoencoders
著者: Zen, Keiki 著作を一覧する
Suzuki, Masahiro 著作を一覧する
Sato, Haruhiko 著作を一覧する
Oyama, Satoshi 著作を一覧する
Kurihara, Masahito 著作を一覧する
キーワード: monophonic sound source separation
unsupervised learning
online learning
non-negative sparse autoencoder
発行日: 2014年
出版者: IEEE (Institute of Electrical and Electronics Engineers)
引用: Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on, ISBN: 978-1-4799-3840-7
開始ページ: 3623
終了ページ: 3626
出版社 DOI: 10.1109/SMC.2014.6974492
抄録: Monophonic sound source separation is an essential subject on the fields where sound, such as voice, music and noise, is dealt with. In particular, unsupervised approaches to this problem have high versatility in comparison with supervised approaches. Non-negative matrix factorization is the most frequently used algorithm for the monophonic sound source separation without prior knowledge. This is also applied to various applications, including data clustering, face recognition, gene expression classification. However, non-negative matrix factorization cannot be efficiently used in online learning. In order to solve this difficulty, the non-negative sparse autoencoder was proposed in the literature. Although several successful applications have been reported, this is not yet applied to the monophonic sound source separation. This paper shows that the non-negative sparse autoencoder can perform the monophonic sound source separation without prior knowledge in online learning.
Rights: © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
資料タイプ: proceedings (author version)
出現コレクション:雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

提供者: 小山 聡


本サイトに関するご意見・お問い合わせは repo at へお願いします。 - 北海道大学