HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Science / Faculty of Science >
北海道大学数学講究録 = Hokkaido University technical report series in mathematics >

Hodge Theory and Algebraic Geometry

Files in This Item:
HodgeIII.pdf198.99 kBPDFView/Open'02(_Ohno_).pdf245.07 kBPDFView/Open
abe.pdf238.1 kBPDFView/Open
arcnash.pdf224.45 kBPDFView/Open
hokudai.pdf200.98 kBPDFView/Open
maeno.pdf126.29 kBPDFView/Open
minagawa.pdf144.13 kBPDFView/Open
naito.pdf114.78 kBPDFView/Open
paper(2002-12-20).pdf187.35 kBPDFView/Open
preface.pdf17.62 kBPDFView/Open
quadricabstract.pdf139.42 kBPDFView/Open
suzuki.pdf177.03 kBPDFView/Open
takeda.pdf192.73 kBPDFView/Open
yamasita.pdf190.69 kBPDFView/Open
Please use this identifier to cite or link to this item:

Title: Hodge Theory and Algebraic Geometry
Authors: Matsushita, D. Browse this author
Issue Date: 1-Jan-2003
Publisher: Department of Mathematics, Hokkaido University
Journal Title: Hokkaido University technical report series in mathematics
Journal Title(alt): 北海道大学数学講究録
Volume: 75
Start Page: 1
Description: Hodge Theory and Algebraic Geometry 2002/10/7-11 Department of Mathematics, Hokkaido University 石井志保子(東工大)Nash problem on arc families for singularities 内藤広嗣 (名大多元) 村上雅亮(京大理)Surfaces with c^2_1= 3 and \kai(O) = 2, which have non-trivial 3-torsion divisors 大野浩二(大阪大)On certain boundedness of fibred Calabi-Yau s threefolds 阿部健(京大理) 春井岳(大阪大)The gonarlity of curves on an elliptic ruled surface 山下剛(東大数理)開多様体のp進etale cohomology と crystalline cohomology 中島幸喜(東京電機大)Theorie de Hodge III pour cohomologies p-adiques 皆川龍博 (東工大)On classification of weakened Fano 3-folds 斉藤夏男(東大数理)Fano threefold in positive characteristic 石井亮(京大工)Variation of the representation moduli of the McKay quiver 前野俊昭(京大理)群のコホモロジーと量子変形 宮岡洋一(東大数理) 次数が低い有理曲線とファノ多様体 池田京司(大阪大)Subvarieties of generic hypersurfaces in a projective toric variety 竹田雄一郎(九大数理)Complexes of hermitian cubes and the Zagier conjecture 臼井三平(大阪大)SL(2)-orbit theorem and log Hodge structures (Joint work with Kazuya Kato) 鈴木香織(東大数理)\rho(X) = 1, f \le 2 のQ-Fano 3-fold Fanoの分類
Type: bulletin (article)
Appears in Collections:理学院・理学研究院 (Graduate School of Science / Faculty of Science) > 北海道大学数学講究録 = Hokkaido University technical report series in mathematics

Submitter: 松下 大介

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 - Hokkaido University